西安停车场管理系统销售电话/铜川楼宇对讲系统销售厂家/陕西翼邦信息科技有限公司
智能家居通常定义为以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统。核心是“物联”,首先需要有一个通信网络,可以囊括所有硬件,为家庭信息交互和传输提供必要的通路。在整体的家庭网络操作系统下,对相应的硬件和模块下达命令从而实现家庭电子硬件的检测和控制。对外,家居系统需要一个媒介平台进行对外通信,实现“内部”与“外部”的通信交流,满足远程控制、检测和信息交换的需求。
据介绍,利达集团研发生产的HBS楼宇自控系统基于开放性的楼控领域国际标准———BACnet协议,该系统中的所有软硬件产品都是遵循此协议的产品,可与其它支持BACnet协议的系统通用和直接进行数据交换。HBS楼宇自控系统的网络支持为以太网,因此可以利用以太网的综合布线系统来实现设备的互联,而不需其它辅件。此外,HBS楼控系统还可根据人们需求自动调节建筑内部温度、湿度、空气质量、灯光照度及相关设备的运行,可根据不同人的感受,进行个性化设定,并且可自动存储个人习惯参数曲线,实现自动调节、分区调节
配线架是电缆或光缆进行连接的端接的装置,通常安装在机柜或墙上。通过安装附件,配线架可以全线满足UTP、STP、同轴电缆、光纤、音视频的需要。如果在综合布线中缺少了配线架,前端的信息点直接接入到交换机上,一旦线缆出现了问题,有可能就要面临重新布线的风险。除此之外,如果没有配线架,在管理上也会比较混乱,多次插拔可能引起交换机端口的损坏。配线架的存在就解决了这个问题,可以通过更换跳线来实现较好的管理。配线架的用法和用量主要是根据总体网络点的数量或者该楼层的网络点数量来配置的。不同的建筑,不同系统设计,主设备间的配线架都会不同。对于多层的数据中心机房,为了避免线缆超长,就可能每层均设有分设备间,且有交换设备,每层都要配备配线架。
车牌识别的工作原理
识别流程
车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
车辆检测
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
车牌识别的工作原理
识别流程
车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
车辆检测
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
车牌识别的工作原理
识别流程
车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
车辆检测
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
.陕西翼邦信息科技有限公司___西安停车场管理系统销售电话/铜川楼宇对讲系统销售厂家/陕西翼邦信息科技有限公司