纳米ZnO技术
1、高电位梯度:近年国内外的研究结果表明,ZnO芯片的电位梯度取决于单位厚度内的晶界数目,液相扩散控制ZnO晶粒的生长速度;而晶界数目又是由ZnO晶粒粒径所确定的,故减小ZnO晶粒粒径是提高ZnO芯片电位梯度的主要途径。
纳米ZnO是由极细晶粒组成,专业电涌保护器厂家,obo电涌保护器相关,其特征维度尺寸(晶粒尺寸、晶界宽度、第二相分布等)是纳米数量级。以纳米ZnO为核心的高梯度配方的设计,专业电涌保护器厂家,热保护器相关,能够有效增加晶界层数量、抑制晶粒生长速度及提高势垒高度,能够大幅提高单位面积的通流能力,能够大幅提高电位梯度。
2、高能量耐受:同单位体积的能量耐受,主要体现在ZnO芯片击穿。其主要原因是由于电流分配不均匀导致热能汇集某一点,最终归结于微观组织结构的不均匀性所致。这就要求尽可能从制造工艺上提高ZnO芯片结构和成分均匀性、减少陶瓷本体内部缺陷。
在原料的选用上,纳米ZnO粒子作为联系宏观物体及微观粒子的桥梁,其表面效应伴随着粒径的减小,表面原子数的迅速增加,纳米粒子的表面积、表面能都迅速增大。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性。
在添加剂的选用上,使用易于分散、活性较高的改性纳米BiO 3 ,有助于提高烧结过程中的传质速度,有助于改善液相对界面的侵润性,形成良好的晶界面。纳米材料的配方、新型高效分散设备的应用和窑炉曲线的调整,对于芯片均匀
性改善均起到显著作用,对于单位体积能量耐受能力提高起到显著作用。
在复用通道的光纤保护上,保护与复用装置时间同步的问题对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步。由于目前光纤均采用64kbit/s数字通道,电流差动保护通道中既要传送电流的幅值,又要传送时间同步信号,通道资源紧张,要求数据的误码校验位不能过长,这样就影响了误码校验的精度。目前部分厂家推出的2Mbit/s数字接口的光纤电流差动保护能很好地解决误码校验精度的问题。 魏德米勒VPU系列电涌保护器采用了压敏电阻和气体放电管组合设计。特别是快速的转盘式脱扣装置,对于Peter Meister AG是选择VPU系列电涌保护器的关键。直插式插座的遥信端子可以快速连接,并永久监控电涌保护器的状态。同时,大视窗状态显示窗提高了可视性,电气柜中的电涌保护器的工作状态可以一目了然的看到。凭借这些产品特点,魏德米勒VARITECTOR PU将有助于确保Brtisellen枢纽在修楫完成后的交通顺畅。事实上,归功于考虑周全的规划安全,今天交通已顺畅。热能聚中技术
1、高安全性:热能聚集人为控制在中心区域;非中心区域的温度,要远低于中心区域。从而保障了热脱离器脱离前,专业电涌保护器厂家,防电涌保护器相关,非中心区域的温度,一直处于安全温度;避免热脱离器脱离过程中,非中心区域的某点温度,可能已经超过甚至远超过警戒值,进而可能引发火灾,保障了客户设备的安全运行。
2、TOV快速、准确:热能聚集人为控制在中心区域;芯片的热能,传导到脱离器的传导距离最短、传导热能最多、传导热能最集中、传导速度最快,保障热脱离器能够最快速度准确脱离。保障了客户设备的TOV的快速、准确。
它的工作原理是:在企事业单位的电气柜上安装一个监控探测器,获取电气设备和线路上涉及电气火灾的传感数据;每个监控探测器上装有无线通讯模块,可将传感数据通过无线方式传送到数据中心。通过用户的电脑、手机进行实时监控剩余电流、温度、电流等数据,再由专业技术人员远程提供专业的故障分析、工作指导,一旦用电系统发生过载和短路等异常现象,就能够报警并自动通过短信向用户发出报警信息,北京电联港电器设备有限责任公司,电联港电器,提醒和督促及时排查,消除安全隐患。SPD选型原则
1、级间配合:电涌保护器SPD2 安装在 SPD1的下游, 通常它的各项参数指标(Imax, In, Ures)都比 SPD1小。但如果它与 SPD1安装得过近, SPD2 有可能比 SPD1更早动作, 从而要承受本由 SPD1承受的高能量。
一定要按逐级分流、分级保护的方法,才能保证SPD即有很长的寿命,又能把电源系统雷击电涌电压限制在设备能承受的水平内。
2、15米原则:当进线端的SPD与被保护设备之间的距离 > 15 米, 应在离被保护设备尽可能近的地方安装另一个电涌保护器
3、10米原则:当保护SPD1和SPD2作为级联安装时,SPD1和SPD2之间的最短距离:10 米。目的为了延迟SPD2上雷击波的到达,以使尽可能多的能量被SPD1释放。
4、50CM原则:进线和出线可以直接并接,也可以用V形接法(凯文接线)连接。直接并接要求a+b≤0.5m, 而V形接法只要求a≤0.5m,以减少引线电感电压降对被保护设备的冲击。